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Abstract. Game boards are described in the Ludii general game sys-
tem by their underlying graphs, based on tiling, shape and graph op-
erators, with the automatic detection of important properties such as
topological relationships between graph elements, directions and radial
step sequences. This approach allows most conceivable game boards to
be described simply and succinctly.
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1 Introduction

The Digital Ludeme Project (DLP) is a five-year research project using Arti-
ficial Intelligence techniques to improve our understanding of the development
of games throughout history [2]. We are modelling the 1,000 most “important”
traditional strategy games in a consistent digital format, to provide a playable
database of the world’s traditional games for comparative analysis.

1.1 Ludii

The Ludii general game system1 [5] is a software tool developed specifically for
this task, for modelling the full range of possible board games (950+ games
implemented in version 1.2.8). Games are described in terms of simple ludemes
assembled into structures to define arbitrarily complex behaviour, where each
ludeme is a game-related concept implemented as a Java class (or enum at-
tribute) in the Ludii code base [4].

A key challenge in this task is to allow the user to describe arbitrarily complex
game boards in a simple and intuitive way. This paper outlines our method for
describing game boards in the Ludii grammar for general games.

1 Ludii is available at ludii.games and the source code at github.com/Ludeme/Ludii

ludii.games
github.com/Ludeme/Ludii
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2 Game Graphs

In Ludii, the board shared by all players is represented internally as a finite
graph defined by a triple of sets G = 〈V,E,C〉 in which V is a set of vertices,
E a set of edges, and C a set of cells. In graph theory, a cell is more commonly
called face and represents a region bounded by a set of edges and that contains
no other vertex or edge.2 Vertex, edge and cell are all graph elements which
can refer to each other, and denote playable sites at which players can place
components during the game:

– Let v ∈ V denote a vertex. Then v is an endpoint to each edge in E(v), C(v)
gives the set of cells that v is part of, and V (v) = ∅.

– Let e ∈ E denote an edge. Then V (e) is a set of 2 vertices that are the
endpoints of e, C(e) gives the set of cells e is bounding, and E(e) = ∅.

– Let c ∈ C denote a cell. Then E(c) is the set of all the edges bounding c, V (c)
gives the set of the vertices which are the endpoints of the edges bounding
c, and C(c) = ∅.

(a) (b)

Fig. 1. (b) A board game with pieces played on vertices, edges and cells. (c) A stacking
board game played on cells.

For example, Figure 1a shows a game with pieces placed on the vertices,
edges and cells of the board graph. Figure 1b shows a board game played only
on the cells, but in which pieces can may stack.

In any single game, components (or a stack of components) can be placed
on any graph element. For this reason, we define a playable site as a triple
〈Type, Index, Level〉 in which the Type can be (Vertex, Edge or Cell), the Index
is the number of the element and the Level is the index of the element in the
stack (0 meaning the ground).

2 We sometimes use “game design” terms or definitions in lieu of stricter mathematical
equivalents, in keeping with Ludii’s primary purpose as a game design tool.
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Any ludeme referring to a playable site has to specify each of these data.
However, for convenience, Ludii uses default values. The default type of a loca-
tion is Cell, except if the description of the game specifies another default site
type. For levels, the default value is the top Level of the location specified.

2.1 Dimensions: Cells or Vertices

(a) (b)

Fig. 2. (a) Chess (8x8 Cells). (b) Go (19x19 Vertices).

The graph is generated based on the specified board dimensions and default
site type. For example, a Chess board described (board (square 8)) (see Fig-
ure 2a) produces a square grid with 8 cells per row and column. However, a
Go board described as (board (square 19) use:Vertex) (see Figure 2b) pro-
duces a square grid with 19 vertices per row and column. Note that if the default
site type is Edge, the vertices are used for the dimensions.

3 Game Board Description

Game boards are described in the Ludii grammar [3] using the following basic
EBNF syntax: <board> ::= (board <graph>) where the underlying <graph>

object defines the vertices, edges and cells that make up the game board.
The user can specify the location of each vertex (and adjacencies between

them as edges) to allow the description of arbitrarily complex graphs, or they
can take advantage of a range of predefined tilings, shapes and graph operators
for more concise descriptions (described more fully in Section 5). For example,
the three game boards shown in Figure 3 are described by the following graphs
(the poly field describes the polygonal shape of the board):
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(a) (b) (c)

Fig. 3. Boards from tilings: (a) hexagonal, (b) semi-regular 3.4.6.4, (c) celtic basis.

(hex 4)

(tiling T3464 2)

(celtic (poly {{3 0}{3 4}{0 4}{0 7}{3 7}{3 11}{6 11}{6 7}{10 7}
{10 5} {6 5}{6 0}}))

4 Graph Relations

For a graph G = 〈V,E,C〉, two different graph elements g1 and g2 can have
different relations:

– Adjacent: g1 and g2 are adjacent if and only if (∃e ∈ E(g1) ∩ E(g2)) ∨
(∃v ∈ V (g1) ∩ V (g2))∨ (∃c ∈ C(g1) ∩ C(g2)). In other words, two graph ele-
ments are adjacent if they share any graph element they are referring.

– Orthogonal: g1 and g2 are orthogonal if and only if ∃e1 ∈ E(g1),∃e2 ∈
E(g2), e1 = e2. In other words, two graph elements are orthogonal if they
share an edge.

– Diagonal: Two cells are considered diagonal if and only if:3

1. They share a vertex (but not an edge) and the bisectors of the angles at
that vertex in each cell are maximally opposed. Note that a cell can have
multiple diagonal neighbours through a vertex if all satisfy this property.
Or:

2. If a cell has no such adjacent neighbour through a given vertex, then we
allow a non-adjacent diagonal neighbour through that vertex if the two
cells are coincident with the end points of some edge E (which does not
belong to either cell) and the bisectors of the angles at the end point in
each cell are maximally opposed.

3 This definition differs slightly from the actual implementation, but it captures the
general understanding of diagonality between cells on a game board.
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These two diagonal relationships are shown in Figure 4.
Diagonality is defined similarly for vertices, but transposing “cell” and “ver-
tex” in the above definitions.

– Off Diagonal: g1 and g2 are off diagonal if and only if g1 ∈ C, g2 ∈ C, ∃v1 ∈
V (g1),∃v2 ∈ V (g2), v1 = v2,@e1 ∈ E(g1),@e2 ∈ E(g2), e1 = e2. In other
words, two cells are off diagonal if they are not diagonal, not orthogonal and
they share a vertex.

– All: g1 and g2 are related if they are orthogonally, adjacently, diagonally or
off diagonally related to each other.

These relationships are summarised for the regular tilings in Table 1.

E

Fig. 4. Adjacent diagonals (left) and non-adjacent diagonals (right).

4.1 Directions

Ludii supports the following direction types:

– Intercardinal directions: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,

SW, WSW, W, WNW, NW, NNW.

– Rotational directions: In, Out, CW (clockwise), CCW (counter-clockwise).
– Spatial directions for 3D games: D, DN, DNE, DE, DSE, DS, DSW, DW,

DNW and U, UN, UNE, UE, USE, US, USW, UW, UNW.

– Axial directions subset (for convenience): N, E, S, W.

– Angled directions subset (for convenience): NE, SE, SW, NW.

Each graph element g has a corresponding set of absolute directions Ad and
relative directions Rd to associated graph elements of the same type. Absolute
directions can be any of the above direction types in addition to any relation
type (Adjacent, Orthogonal, Diagonal, Off Diagonal, or All).
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Table 1. Relations for the regular tilings.

Relation Square Triangular Hexagonal

All

Adjacent

Orthogonal

Diagonal

Off-Diagonal
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Relative directions from an element g are defined by Rd(g, facing, rotation,
relation) where facing describes direction in which a component at g is facing,
rotation describes to the number of rightward steps of the component at g,
and relation describes the graph relation to use at each step (Adjacent by
default). Relative directions are: Forward, Backward, Rightward, Leftward,

FR, FRR, FRRR, FL, FLL, FLLL, BR, BRR, BRRR, BL, BLL or BLLL.
For example, consider a piece on a square board (which involves only the

eight major compass directions as adjacent relations). If the piece is facing N

(North) with a rotation of 0, the relative direction Forward is the graph ele-
ment immediately to the North (upwards) if such an element exists. However, if
that piece is facing E (East) and its current rotation is 1, the relative direction
FR (meaning “Forward Right”) is the graph element immediately to the South
(below) if such an element exists.

4.2 Steps and Walks

A step is a record of two related graph elements (from and to) which can be
of different types and the absolute directions that describe their relationship.
For example, a cell A directly above another cell B on a Chess board could be
described as an Adjacent, Orthogonal or N step away.

Ludii also provide three relative step types (F, L and R) that allow users to
define walks within the board graph. These correspond the standard “forward”,
“left” and “right” commands used in turtle graphics [1], as shown in Figure 5.

RL

F

RL
R,R

R

L,L

L

R,R

R

F

L

L,L

Fig. 5. Relative steps from various cell types.

This representation allows descriptions of piece movements to be easily trans-
ferred between different board topologies. For example, a knight move in Chess
may be described as the walk {F,F,R} as shown in Figure 6 (left) ans this walk
may be directly used on a board based on the semi-regular 3.4.6.4 tiling (Fig-
ure 6, right). Note, however, that different topologies may introduce ambiguities
such as whether both right turns in the 3.4.6.4 knight move (dotted lines) should
be considered valid moves or only one of them (probably the furthest reaching
one). Such ambiguities should be resolved by the game designer according to the
behaviour they want.
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NN

Fig. 6. Walk {F,F,R} describes knight moves on square and 3.4.6.4 tilings.

4.3 Radials

Many games involve piece movement through contiguous lines of cells in a direc-
tion, such as slide moves by the queen, rook and bishop pieces in Chess. Ludii
automatically generates such radials for each playable site on the board, for
convenient game description and efficient processing.

For each playable site on the board S, each valid step to a neighbouring
graph element of the same type in an absolute direction d is extended as far as
possible, to produce a radial from S in direction d. For example, Figure 7 shows
Orthogonal radials from the shaded cell on a circular Chess board, such as a
rook would move in the game Shatranj ar-Rumiya. Note that radials may bend
to follow the board topology.

Radials extend step-by-step to the next step in the given absolute direction
that minimises deviation in the radial’s current heading. If the next step would
deviate by 90o or more, then the radial terminates.

Radials can branch where two or more steps in the current direction are
equally as good.4 For example, Figure 8 shows how an Orthogonal step into a
triangular cell may validly continue either L (left) or R (right), and thereafter
alternate {L,R,L,R,...} to produce branching zig-zagging radials in which the
direction of each individual step is less important than the average direction of
the radial overall.

4 Still to be implemented in Ludii.



General Board Geometry 9

Fig. 7. Orthogonal radials on a circular Chess board (Shatranj ar-Rumiya).

RL

R

L

RL

R

L

RL

RL

R

L

RL

R

L

RL

Fig. 8. Branching radial on a triangular grid.
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5 Graph Operators

Graphs are initially defined by a tiling and/or shape but can then be further
modified using a range of graph operators. The complete set of tilings, shapes
and graph operators defined in the Ludii grammar is shown in Table 2. These
can be used in combination to define thousands of different boards types quickly
and easily. Greyed out items indicate planned future work not implemented yet.

Table 2. Keywords in the Ludii grammar for describing game boards.

Tiling Shape Operator

Regular square add

square rectangle clip

hex hexagon complete

tri triangle dual

wedge hole

Semi-Regular regular (polygon) intersect

T488 (i.e. 4.8.8) poly (any polygon) keep

T4612 (i.e. 4.6.12) layers

T3464 (i.e. 3.4.6.4) Attribute makeFaces

T3636 (i.e. 3.6.3.6) Star merge

T31212 (i.e. 3.12.12) Diamond recoordinate

T33336 (i.e. 3.3.3.3.6) Prism remove

T33344 (i.e. 3.3.3.4.4) renumber

T33434 (i.e. 3.3.4.3.4) Modifier rotate

diagonals:<DiagType> scale

Custom pyramidal:<boolean> shift

concentric limping:<boolean> skew

spiral fractal/recursive splitCrossings

quadhex lattice subdivide

brick projective trim

celtic union

repeat

For example, the very useful dual operator converts a source graph into its
weak dual defined by edges whose end points are the centroids of its adjacent
cells. Figure 2 shows a dual operation applied to a small graph based on tiling
3.3.4.3.4 to produce the well known Cairo tiling:

(dual (tiling T33434 2))

Another useful operator is subdivide, which subdivides all faces with N or
more sides into triangular sub-faces that share a central vertex (default N = 1).
Figure 10 shows a sequence of subdivide and dual operations applied to a
rhombitrihexahedral 3.4.6.4 tiling to produce a novel and exotic board design:
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(a) (b) (c)

Fig. 9. A 3.3.4.3.4 tiling (a), its cell adjacencies (b) and its weak dual (c).

(dual (subdivide (dual (subdivide (tiling T3464 2) min:6))))

(a) (b) (c)

(d) (e)

Fig. 10. A 3.4.6.4 tiling (a) subdivided at N ≥ 6 (b), its dual (c), all subdivided (d)
and its dual (e).
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6 Conclusion

The Ludii grammar provides a simple way to describe almost any conceivable
game board by its underlying graph, using tiling, shape and graph operators.
This approach has allowed us to model the boards of hundreds of games for
the Ludii general game system, and continues to produce interesting new board
designs based on simple operations.
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